\(\int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx\) [210]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 218 \[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {11 \sqrt [4]{-1} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 \sqrt {a} d}+\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}+\frac {7 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 a d}-\frac {3 i \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 a d} \]

[Out]

11/4*(-1)^(1/4)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d/a^(1/2)+(1/2-1/2*I)*arc
tanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d/a^(1/2)+7/4*tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c)
)^(1/2)/a/d-3/2*I*(a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)/a/d-tan(d*x+c)^(5/2)/d/(a+I*a*tan(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.81 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {3639, 3678, 3682, 3625, 211, 3680, 65, 223, 209} \[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {11 \sqrt [4]{-1} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 \sqrt {a} d}+\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}-\frac {3 i \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 a d}+\frac {7 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 a d} \]

[In]

Int[Tan[c + d*x]^(7/2)/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(11*(-1)^(1/4)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(4*Sqrt[a]*d) + ((1
/2 - I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]*d) - Tan[c + d*x]
^(5/2)/(d*Sqrt[a + I*a*Tan[c + d*x]]) + (7*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(4*a*d) - (((3*I)/2)
*Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/(a*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3639

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-(b*c - a*d))*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n - 1)/(2*a*f*m)), x] + Dist[1/(2*a^2*m), Int[(
a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[c*(a*c*m + b*d*(n - 1)) - d*(b*c*m + a*d*(n - 1)
) - d*(b*d*(m - n + 1) - a*c*(m + n - 1))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
- a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && GtQ[n, 1] && (IntegerQ[m] || IntegersQ[2*m
, 2*n])

Rule 3678

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] +
Dist[1/(a*(m + n)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*A*c*(m + n) - B*(b*c*m + a*
d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3682

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \left (-\frac {5 a}{2}+3 i a \tan (c+d x)\right ) \, dx}{a^2} \\ & = -\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}-\frac {3 i \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 a d}-\frac {\int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} \left (-\frac {9 i a^2}{2}-\frac {7}{2} a^2 \tan (c+d x)\right ) \, dx}{2 a^3} \\ & = -\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}+\frac {7 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 a d}-\frac {3 i \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 a d}-\frac {\int \frac {\sqrt {a+i a \tan (c+d x)} \left (\frac {7 a^3}{4}-\frac {11}{4} i a^3 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx}{2 a^4} \\ & = -\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}+\frac {7 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 a d}-\frac {3 i \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 a d}-\frac {11 \int \frac {(a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{8 a^2}+\frac {\int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{2 a} \\ & = -\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}+\frac {7 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 a d}-\frac {3 i \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 a d}-\frac {11 \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{8 d}-\frac {(i a) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = \frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}+\frac {7 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 a d}-\frac {3 i \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 a d}-\frac {11 \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{4 d} \\ & = \frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}+\frac {7 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 a d}-\frac {3 i \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 a d}-\frac {11 \text {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 d} \\ & = \frac {11 \sqrt [4]{-1} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 \sqrt {a} d}+\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}+\frac {7 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 a d}-\frac {3 i \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.35 (sec) , antiderivative size = 199, normalized size of antiderivative = 0.91 \[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {11 (-1)^{3/4} a \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}-2 i \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}+a \tan (c+d x) \left (7+i \tan (c+d x)+2 \tan ^2(c+d x)\right )}{4 a d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \]

[In]

Integrate[Tan[c + d*x]^(7/2)/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(11*(-1)^(3/4)*a*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[Tan[c + d*x]] - (2*I)*Sq
rt[2]*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[I*a*Tan[c + d*x]]*Sqrt[a + I*a
*Tan[c + d*x]] + a*Tan[c + d*x]*(7 + I*Tan[c + d*x] + 2*Tan[c + d*x]^2))/(4*a*d*Sqrt[Tan[c + d*x]]*Sqrt[a + I*
a*Tan[c + d*x]])

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 663 vs. \(2 (170 ) = 340\).

Time = 1.14 (sec) , antiderivative size = 664, normalized size of antiderivative = 3.05

method result size
derivativedivides \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (2 i \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \left (\tan ^{2}\left (d x +c \right )\right )+4 i \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-2 i \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -22 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\, \tan \left (d x +c \right )+16 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+4 \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \tan \left (d x +c \right )+11 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+2 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )-11 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}+14 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{8 d a \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}}\) \(664\)
default \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (2 i \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \left (\tan ^{2}\left (d x +c \right )\right )+4 i \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-2 i \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -22 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\, \tan \left (d x +c \right )+16 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+4 \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \tan \left (d x +c \right )+11 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+2 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )-11 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}+14 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{8 d a \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}}\) \(664\)

[In]

int(tan(d*x+c)^(7/2)/(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/8/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*(2*I*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*
tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*(I*a)^(1/2)*a*tan(d*x+c)^2+4*I*(a*tan(d*x+c)*(1+I*tan(d
*x+c)))^(1/2)*(-I*a)^(1/2)*(I*a)^(1/2)*tan(d*x+c)^3-2*I*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*
tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*(I*a)^(1/2)*a-22*I*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c
)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*tan(d*x+c)+16*I*tan(d*x+c)*(a*tan(d*x+
c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)+4*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)
))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*(I*a)^(1/2)*2^(1/2)*a*tan(d*x+c)+11*(-I*a)^(1/2)*ln(1/2*(2*I*a*ta
n(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*tan(d*x+c)^2+2*(-I*a)^(1/2)*(I*
a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^2-11*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*t
an(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2)+14*(-I*a)^(1/2)*(I*a)^(1/2)*(a*tan(d*x+c)*(1+I*ta
n(d*x+c)))^(1/2))/a/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)/(-tan(d*x+c)+I)^2

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 658 vs. \(2 (160) = 320\).

Time = 0.31 (sec) , antiderivative size = 658, normalized size of antiderivative = 3.02 \[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (3 \, e^{\left (4 i \, d x + 4 i \, c\right )} + 9 \, e^{\left (2 i \, d x + 2 i \, c\right )} + 2\right )} + {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {-\frac {2 i}{a d^{2}}} \log \left (\frac {1}{4} \, a d \sqrt {-\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {-\frac {2 i}{a d^{2}}} \log \left (-\frac {1}{4} \, a d \sqrt {-\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {-\frac {121 i}{16 \, a d^{2}}} \log \left (\frac {208 \, {\left (11 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (3 i \, d x + 3 i \, c\right )} + e^{\left (i \, d x + i \, c\right )}\right )} + 2 \, {\left (3 \, a d e^{\left (2 i \, d x + 2 i \, c\right )} - a d\right )} \sqrt {-\frac {121 i}{16 \, a d^{2}}}\right )}}{6655 \, {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}}\right ) + {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {-\frac {121 i}{16 \, a d^{2}}} \log \left (\frac {208 \, {\left (11 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (3 i \, d x + 3 i \, c\right )} + e^{\left (i \, d x + i \, c\right )}\right )} - 2 \, {\left (3 \, a d e^{\left (2 i \, d x + 2 i \, c\right )} - a d\right )} \sqrt {-\frac {121 i}{16 \, a d^{2}}}\right )}}{6655 \, {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}}\right )}{4 \, {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )}} \]

[In]

integrate(tan(d*x+c)^(7/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(3
*e^(4*I*d*x + 4*I*c) + 9*e^(2*I*d*x + 2*I*c) + 2) + (a*d*e^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c))*sqrt(-2*I/
(a*d^2))*log(1/4*a*d*sqrt(-2*I/(a*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((
-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)) - (a*d*e^(3*I*d*x + 3*I*c) +
 a*d*e^(I*d*x + I*c))*sqrt(-2*I/(a*d^2))*log(-1/4*a*d*sqrt(-2*I/(a*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/
(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) +
 1)) - (a*d*e^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c))*sqrt(-121/16*I/(a*d^2))*log(208/6655*(11*sqrt(2)*sqrt(a
/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(3*I*d*x + 3*I*c)
+ e^(I*d*x + I*c)) + 2*(3*a*d*e^(2*I*d*x + 2*I*c) - a*d)*sqrt(-121/16*I/(a*d^2)))/(e^(2*I*d*x + 2*I*c) + 1)) +
 (a*d*e^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c))*sqrt(-121/16*I/(a*d^2))*log(208/6655*(11*sqrt(2)*sqrt(a/(e^(2
*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(3*I*d*x + 3*I*c) + e^(I
*d*x + I*c)) - 2*(3*a*d*e^(2*I*d*x + 2*I*c) - a*d)*sqrt(-121/16*I/(a*d^2)))/(e^(2*I*d*x + 2*I*c) + 1)))/(a*d*e
^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c))

Sympy [F(-1)]

Timed out. \[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate(tan(d*x+c)**(7/2)/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int { \frac {\tan \left (d x + c\right )^{\frac {7}{2}}}{\sqrt {i \, a \tan \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(tan(d*x+c)^(7/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(tan(d*x + c)^(7/2)/sqrt(I*a*tan(d*x + c) + a), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(tan(d*x+c)^(7/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Non regular value [0] was discarded and replaced randomly by 0=[84]Warning, replacing 84 by -86, a substitu
tion variab

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^{7/2}}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \]

[In]

int(tan(c + d*x)^(7/2)/(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

int(tan(c + d*x)^(7/2)/(a + a*tan(c + d*x)*1i)^(1/2), x)